Rad-supplemented modules
Page 1
Engin Büyükaşik, Engin Mermut, Salahattin Özdemir (2010)
Rendiconti del Seminario Matematico della Università di Padova
J.D.P. Meldrum, C.G. Lyons (1980)
Monatshefte für Mathematik
Kamal, Mahmoud Ahmed (1994)
International Journal of Mathematics and Mathematical Sciences
Jialei Chen, Shilin Yang (2022)
Czechoslovak Mathematical Journal
We first describe the Sekine quantum groups (the finite-dimensional Kac algebra of Kac-Paljutkin type) by generators and relations explicitly, which maybe convenient for further study. Then we classify all irreducible representations of and describe their representation rings . Finally, we compute the the Frobenius-Perron dimension of the Casimir element and the Casimir number of .
Petr Nemec (1978)
Publications du Département de mathématiques (Lyon)
P. Gabriel, R. Bautista, A.V. Roiter (1985)
Inventiones mathematicae
Gerhard O. Michler (1972)
Mathematische Zeitschrift
Hanns Joachim Weinert (1975/1976)
Jahresbericht der Deutschen Mathematiker-Vereinigung
Otto Kerner (1979)
Journal für die reine und angewandte Mathematik
Tominaga, Hisao (1985)
International Journal of Mathematics and Mathematical Sciences
Jiang Luh (1976)
Fundamenta Mathematicae
M.S. Putcha (1981)
Semigroup forum
Nguyen Viet Dung, José Luis García (2009)
Colloquium Mathematicae
A module M is called finendo (cofinendo) if M is finitely generated (respectively, finitely cogenerated) over its endomorphism ring. It is proved that if R is any hereditary ring, then the following conditions are equivalent: (a) Every right R-module is finendo; (b) Every left R-module is cofinendo; (c) R is left pure semisimple and every finitely generated indecomposable left R-module is cofinendo; (d) R is left pure semisimple and every finitely generated indecomposable left R-module is finendo;...
Carl Faith (1995)
Publicacions Matemàtiques
A ring R is a right max ring if every right module M ≠ 0 has at least one maximal submodule. It suffices to check for maximal submodules of a single module and its submodules in order to test for a max ring; namely, any cogenerating module E of mod-R; also it suffices to check the submodules of the injective hull E(V) of each simple module V (Theorem 1). Another test is transfinite nilpotence of the radical of E in the sense that radα E = 0; equivalently, there is an ordinal α such that radα(E(V))...
P. Jones (1993)
Semigroup forum
Putcha, Mohan.S., Yaqub, Adil (1979)
International Journal of Mathematics and Mathematical Sciences
Singh, Surjeet, Al-Bleehed, Hind (2004)
Beiträge zur Algebra und Geometrie
Chen, Huanyin (1999)
International Journal of Mathematics and Mathematical Sciences
David Jonah (1970)
Mathematische Zeitschrift
Alexander Abian (1975)
Matematický časopis
Page 1