Decomposition of a semiring into division semirings
In our recent paper (J. Algebra 345 (2011)) we prove that the deformed preprojective algebras of generalized Dynkin type ₙ (in the sense of our earlier work in Trans. Amer Math. Soc. 359 (2007)) are exactly (up to isomorphism) the stable Auslander algebras of simple plane singularities of Dynkin type . In this article we complete the picture by showing that the deformed mesh algebras of Dynkin type ℂₙ are isomorphic to the canonical mesh algebras of type ℂₙ, and hence to the stable Auslander algebras...
Let Λ be an artin algebra. We prove that for each sequence of non-negative integers there are only a finite number of isomorphism classes of indecomposables , the bounded derived category of Λ, with for all i ∈ ℤ and E(X) the endomorphism ring of X in if and only if , the bounded derived category of the category of all left Λ-modules, has no generic objects in the sense of [4].
We complete the derived equivalence classification of all weakly symmetric algebras of domestic type over an algebraically closed field, by solving the problem of distinguishing standard and nonstandard algebras up to stable equivalence, and hence derived equivalence. As a consequence, a complete stable equivalence classification of weakly symmetric algebras of domestic type is obtained.
In this paper, we introduce related comparability for exchange ideals. Let be an exchange ideal of a ring . If satisfies related comparability, then for any regular matrix , there exist left invertible and right invertible such that for idempotents .
We characterize left Noetherian rings which have only trivial derivations.
We extend our module-theoretic approach to Zavadskiĭ’s differentiation techniques in representation theory. Let R be a complete discrete valuation domain with quotient field K, and Λ an R-order in a finite-dimensional K-algebra. For a hereditary monomorphism u: P ↪ I of Λ-lattices we have an equivalence of quotient categories which generalizes Zavadskiĭ’s algorithms for posets and tiled orders, and Simson’s reduction algorithm for vector space categories. In this article we replace u by a more...
Let be a trivial extension of a ring by an --bimodule such that , , and have finite flat dimensions. We prove that is a Ding projective left -module if and only if the sequence is exact and is a Ding projective left -module. Analogously, we explicitly describe Ding injective -modules. As applications, we characterize Ding projective and Ding injective modules over Morita context rings with zero bimodule homomorphisms.