Displaying 41 – 60 of 79

Showing per page

The quasi-hereditary algebra associated to the radical bimodule over a hereditary algebra

Lutz Hille, Dieter Vossieck (2003)

Colloquium Mathematicae

Let Γ be a finite-dimensional hereditary basic algebra. We consider the radical rad Γ as a Γ-bimodule. It is known that there exists a quasi-hereditary algebra 𝓐 such that the category of matrices over rad Γ is equivalent to the category of Δ-filtered 𝓐-modules ℱ(𝓐,Δ). In this note we determine the quasi-hereditary algebra 𝓐 and prove certain properties of its module category.

The representation dimension of domestic weakly symmetric algebras

Rafał Bocian, Thorsten Holm, Andrzej Skowroński (2004)

Open Mathematics

Auslander’s representation dimension measures how far a finite dimensional algebra is away from being of finite representation type. In [1], M. Auslander proved that a finite dimensional algebra A is of finite representation type if and only if the representation dimension of A is at most 2. Recently, R. Rouquier proved that there are finite dimensional algebras of an arbitrarily large finite representation dimension. One of the exciting open problems is to show that all finite dimensional algebras...

The symplectic Gram-Schmidt theorem and fundamental geometries for 𝒜 -modules

Patrice P. Ntumba (2012)

Czechoslovak Mathematical Journal

Like the classical Gram-Schmidt theorem for symplectic vector spaces, the sheaf-theoretic version (in which the coefficient algebra sheaf 𝒜 is appropriately chosen) shows that symplectic 𝒜 -morphisms on free 𝒜 -modules of finite rank, defined on a topological space X , induce canonical bases (Theorem 1.1), called symplectic bases. Moreover (Theorem 2.1), if ( , φ ) is an 𝒜 -module (with respect to a -algebra sheaf 𝒜 without zero divisors) equipped with an orthosymmetric 𝒜 -morphism, we show, like in the classical...

Currently displaying 41 – 60 of 79