Previous Page 4

Displaying 61 – 79 of 79

Showing per page

There is no analog of the transpose map for infinite matrices.

Juan Jacobo Simón (1997)

Publicacions Matemàtiques

In this note we show that there are no ring anti-isomorphism between row finite matrix rings. As a consequence we show that row finite and column finite matrix rings cannot be either isomorphic or Morita equivalent rings. We also show that antiisomorphisms between endomorphism rings of infinitely generated projective modules may exist.

Thick subcategories of the stable module category

D. Benson, Jon Carlson, Jeremy Rickard (1997)

Fundamenta Mathematicae

We study the thick subcategories of the stable category of finitely generated modules for the principal block of the group algebra of a finite group G over a field of characteristic p. In case G is a p-group we obtain a complete classification of the thick subcategories. The same classification works whenever the nucleus of the cohomology variety is zero. In case the nucleus is nonzero, we describe some examples which lead us to believe that there are always infinitely many thick subcategories concentrated...

Totally reflexive modules with respect to a semidualizing bimodule

Zhen Zhang, Xiaosheng Zhu, Xiaoguang Yan (2013)

Czechoslovak Mathematical Journal

Let S and R be two associative rings, let S C R be a semidualizing ( S , R ) -bimodule. We introduce and investigate properties of the totally reflexive module with respect to S C R and we give a characterization of the class of the totally C R -reflexive modules over any ring R . Moreover, we show that the totally C R -reflexive module with finite projective dimension is exactly the finitely generated projective right R -module. We then study the relations between the class of totally reflexive modules and the Bass class...

Trisections of module categories

José A. de la Peña, Idun Reiten (2007)

Colloquium Mathematicae

Let A be a finite-dimensional algebra over a field k. We discuss the existence of trisections (mod₊ A,mod₀ A,mod₋ A) of the category of finitely generated modules mod A satisfying exactness, standardness, separation and adjustment conditions. Many important classes of algebras admit trisections. We describe a construction of algebras admitting a trisection of their module categories and, in special cases, we describe the structure of the components of the Auslander-Reiten quiver lying in mod₀ A.

Currently displaying 61 – 79 of 79

Previous Page 4