The search session has expired. Please query the service again.
Displaying 581 –
600 of
1163
We describe the structure of all selfinjective artin algebras having at least three nonperiodic generalized standard Auslander-Reiten components. In particular, all selfinjective artin algebras having a generalized standard Auslander-Reiten component of Euclidean type are described.
The aim of this paper is to investigate quasi-corational, comonoform, copolyform and -(co)atomic modules. It is proved that for an ordinal a right -module is -atomic if and only if it is -coatomic. And it is also shown that an -atomic module is quasi-projective if and only if is quasi-corationally complete. Some other results are developed.
Given a semiperfect two-sided noetherian ring Λ, we study two subcategories and of the category mod Λ of finitely generated right Λ-modules, where Tr M is Auslander’s transpose of M. In particular, we give another convenient description of the categories and , and we study category equivalences and stable equivalences between them. Several results proved in [J. Algebra 301 (2006), 748-780] are extended to the case when Λ is a two-sided noetherian semiperfect ring.
Let F: R → R/G be a Galois covering and (resp. ) be a full subcategory of the module category mod (R/G), consisting of all R/G-modules of first (resp. second) kind with respect to F. The structure of the categories and is given in terms of representation categories of stabilizers of weakly-G-periodic modules for some class of coverings.
Currently displaying 581 –
600 of
1163