Tilting Modules of Finite Projective Dimension.
We show the Tychonoff's theorem for a Grothendieck category with a set of small projective generators. Strictly quasi-finite objects for semiartinian Grothendieck categories are characterized. We apply these results to the study of the Morita duality of dual algebra of a coalgebra.
Let and be two associative rings, let be a semidualizing -bimodule. We introduce and investigate properties of the totally reflexive module with respect to and we give a characterization of the class of the totally -reflexive modules over any ring . Moreover, we show that the totally -reflexive module with finite projective dimension is exactly the finitely generated projective right -module. We then study the relations between the class of totally reflexive modules and the Bass class...
Let A be a finite-dimensional algebra over a field k. We discuss the existence of trisections (mod₊ A,mod₀ A,mod₋ A) of the category of finitely generated modules mod A satisfying exactness, standardness, separation and adjustment conditions. Many important classes of algebras admit trisections. We describe a construction of algebras admitting a trisection of their module categories and, in special cases, we describe the structure of the components of the Auslander-Reiten quiver lying in mod₀ A.