Coalgebras, braidings, and distributive laws.
Soit la première algèbre de Weyl sur . La codimension B-W d’un idéal à droite non nul de a été introduite par Yuri Berest et George Wilson. Nous montrons d’une part que cette codimension est invariante par la relation de Stafford : si , le corps de fractions de , et si , le groupe des -automorphismes de , sont tels que soit un idéal à droite de , alors . Nous relions d’autre part la codimension d’un idéal à la codimension de Gail Letzter-Makar Limanov, de , l’anneau des endomorphismes...
Let be a ring. A subclass of left -modules is called a weak torsion class if it is closed under homomorphic images and extensions. Let be a weak torsion class of left -modules and a positive integer. Then a left -module is called -finitely generated if there exists a finitely generated submodule such that ; a left -module is called -presented if there exists an exact sequence of left -modules such that are finitely generated free and is -finitely generated; a left -module...
We give axiomatic conditions in order to calculate the local cohomology of some idempotent kernel functors. These results lie in some new dimension introduced by T. Levasseur for Auslander-Gorenstein rings. Under some hypothesis, we generalize previous results.
We provide some characterizations of rings for which every (finitely generated) module belonging to a class of -modules is a direct sum of cyclic submodules. We focus on the cases, where the class is one of the following classes of modules: semiartinian modules, semi-V-modules, V-modules, coperfect modules and locally supplemented modules.
We investigate the relationship between the Gröbner-Shirshov bases in free associative algebras, free left modules and “double-free” left modules (that is, free modules over a free algebra). We first give Chibrikov’s Composition-Diamond lemma for modules and then we show that Kang-Lee’s Composition-Diamond lemma follows from it. We give the Gröbner-Shirshov bases for the following modules: the highest weight module over a Lie algebra , the Verma module over a Kac-Moody algebra, the Verma module...
First, we give complete description of the comultiplication modules over a Dedekind domain. Second, if is the pullback of two local Dedekind domains, then we classify all indecomposable comultiplication -modules and establish a connection between the comultiplication modules and the pure-injective modules over such domains.