Page 1

Displaying 1 – 10 of 10

Showing per page

Bases of minimal elements of some partially ordered free abelian groups

Pavel Příhoda (2003)

Commentationes Mathematicae Universitatis Carolinae

In the present paper, we will show that the set of minimal elements of a full affine semigroup A 0 k contains a free basis of the group generated by A in k . This will be applied to the study of the group K 0 ( R ) for a semilocal ring R .

Batalin-Vilkovisky algebra structures on Hochschild cohomology

Luc Menichi (2009)

Bulletin de la Société Mathématique de France

Let M be any compact simply-connected oriented d -dimensional smooth manifold and let 𝔽 be any field. We show that the Gerstenhaber algebra structure on the Hochschild cohomology on the singular cochains of M , H H * ( S * ( M ) , S * ( M ) ) , extends to a Batalin-Vilkovisky algebra. Such Batalin-Vilkovisky algebra was conjectured to exist and is expected to be isomorphic to the Batalin-Vilkovisky algebra on the free loop space homology on M , H * + d ( L M ) introduced by Chas and Sullivan. We also show that the negative cyclic cohomology H C - * ( S * ( M ) ) ...

Bi-ideals in k-regular and intra k-regular semirings

Anjan K. Bhuniya, Kanchan Jana (2011)

Discussiones Mathematicae - General Algebra and Applications

Here we introduce the k-bi-ideals in semirings and the intra k-regular semirings. An intra k-regular semiring S is a semiring whose additive reduct is a semilattice and for each a ∈ S there exists x ∈ S such that a + xa²x = xa²x. Also it is a semiring in which every k-ideal is semiprime. Our aim in this article is to characterize both the k-regular semirings and intra k-regular semirings using of k-bi-ideals.

Currently displaying 1 – 10 of 10

Page 1