La K-théorie stable
Using a notion of distance between indecomposable modules we deduce new characterizations of laura algebras and quasi-directed Auslander-Reiten components. Afterwards, we investigate the infinite radical of Artin algebras and show that there exist infinitely many non-directing modules between two indecomposable modules X and Y if . We draw as inference that a convex component is quasi-directed if and only if it is almost directed.
Let be the polynomial ring over a ring with unity. A polynomial is referred to as a left annihilating content polynomial (left ACP) if there exist an element and a polynomial such that and is not a right zero-divisor polynomial in . A ring is referred to as left EM if each polynomial is a left ACP. We observe the structure of left EM rings with various properties, and study the relationships between the one-sided EM condition and other standard ring theoretic conditions. Moreover,...
We define a notion of left section in an Auslander-Reiten component, by weakening one of the axioms for sections. We derive a generalisation of the Liu-Skowroński criterion for tilted algebras, then apply our results to describe the Auslander-Reiten components lying in the left part of an artin algebra.
Bimodules over triangular Nakayama algebras that give stable equivalences of Morita type are studied here. As a consequence one obtains that every stable equivalence of Morita type between triangular Nakayama algebras is a Morita equivalence.
On étudie dans cet article les notions d’algèbre à homotopie près pour une structure définie par deux opérations et . Ayant déterminé la structure des algèbres et des algèbres, on généralise cette construction et on définit la stucture des -algèbres à homotopie près. Etant donnée une structure d’algèbre commutative et de Lie différentielle graduée pour deux décalages des degrés donnés par et , on donnera une construction explicite de l’algèbre à homotopie près associée et on précisera...
We study the problem of when a direct limit of tilting modules is still a tilting module.
The aim of this paper is to establish the close connection between prime ideals and torsion theories in a non necessarily commutative noetherian ring. We introduce a new definition of support of a module and characterize some kinds of torsion theories in terms of prime ideals. Using the machinery introduced before, we prove a version of the Mayer-Vietoris Theorem for local cohomology and establish a relationship between the classical dimension and the vanishing of the groups of local cohomology...