G-algebras, Jacobson radical and almost split sequences.
Let and be two ring homomorphisms and let and be ideals of and , respectively, such that . In this paper, we investigate the transfer of the notions of Gaussian and Prüfer rings to the bi-amalgamation of with along with respect to (denoted by introduced and studied by S. Kabbaj, K. Louartiti and M. Tamekkante in 2013. Our results recover well known results on amalgamations in C. A. Finocchiaro (2014) and generate new original examples of rings possessing these properties.
We proved in an earlier work that any existence variety of regular algebras is generated by its simple unital Artinian members, while any existence variety of Arguesian sectionally complemented lattices is generated by its simple members of finite length. A characterization of the class of simple unital Artinian members [members of finite length, respectively] of such varieties is given in the present paper.
We shall give a survey of classical examples, together with algebraic methods to deal with those structures: graded algebra, cohomologies, cohomology operations. The corresponding geometric structures will be described(e.g., Lie algebroids), with particular emphasis on supergeometry, odd supersymplectic structures and their classification. Finally, we shall explain how BV-structures appear in Quantum Field Theory, as a version of functional integral quantization.
In this paper we compute the global dimension of Noetherian rings and rings with Gabriel and Krull dimension by taking a subclass of cyclic modules determined by the Gabriel filtration in the lattice of hereditary torsion theories.
The homology theory of colored posets, defined by B. Everitt and P. Turner, is generalized. Two graph categories are defined and Khovanov type graph cohomology are interpreted as Ext* groups in functor categories associated to these categories. The connection, described by J. H. Przytycki, between the Hochschild homology of an algebra and the graph cohomology, defined for the same algebra and a cyclic graph, is explained from the point of view of homological algebra in functor categories.