Page 1

Displaying 1 – 16 of 16

Showing per page

FC-modules with an application to cotorsion pairs

Yonghua Guo (2009)

Commentationes Mathematicae Universitatis Carolinae

Let R be a ring. A left R -module M is called an FC-module if M + = Hom ( M , / ) is a flat right R -module. In this paper, some homological properties of FC-modules are given. Let n be a nonnegative integer and ℱ𝒞 n the class of all left R -modules M such that the flat dimension of M + is less than or equal to n . It is shown that ( ( ℱ𝒞 n ) , ℱ𝒞 n ) is a complete cotorsion pair and if R is a ring such that fd ( ( R R ) + ) n and ℱ𝒞 n is closed under direct sums, then ( ℱ𝒞 n , ℱ𝒞 n ) is a perfect cotorsion pair. In particular, some known results are obtained as corollaries....

Finiteness aspects of Gorenstein homological dimensions

Samir Bouchiba (2013)

Colloquium Mathematicae

We present an alternative way of measuring the Gorenstein projective (resp., injective) dimension of modules via a new type of complete projective (resp., injective) resolutions. As an application, we easily recover well known theorems such as the Auslander-Bridger formula. Our approach allows us to relate the Gorenstein global dimension of a ring R to the cohomological invariants silp(R) and spli(R) introduced by Gedrich and Gruenberg by proving that leftG-gldim(R) = maxleftsilp(R), leftspli(R),...

Finiteness of local homology modules

Shahram Rezaei (2020)

Archivum Mathematicum

Let I be an ideal of Noetherian ring R and M a finitely generated R -module. In this paper, we introduce the concept of weakly colaskerian modules and by using this concept, we give some vanishing and finiteness results for local homology modules. Let I M : = Ann R ( M / I M ) , we will prove that for any integer n If ...

Finiteness of the strong global dimension of radical square zero algebras

Otto Kerner, Andrzej Skowroński, Kunio Yamagata, Dan Zacharia (2004)

Open Mathematics

The strong global dimension of a finite dimensional algebra A is the maximum of the width of indecomposable bounded differential complexes of finite dimensional projective A-modules. We prove that the strong global dimension of a finite dimensional radical square zero algebra A over an algebraically closed field is finite if and only if A is piecewise hereditary. Moreover, we discuss results concerning the finiteness of the strong global dimension of algebras and the related problem on the density...

Formality theorems: from associators to a global formulation

Gilles Halbout (2006)

Annales mathématiques Blaise Pascal

Let M be a differential manifold. Let Φ be a Drinfeld associator. In this paper we explain how to construct a global formality morphism starting from Φ . More precisely, following Tamarkin’s proof, we construct a Lie homomorphism “up to homotopy" between the Lie algebra of Hochschild cochains on C ( M ) and its cohomology ( Γ ( M , Λ T M ) , [ - , - ] S ). This paper is an extended version of a course given 8 - 12 March 2004 on Tamarkin’s works. The reader will find explicit examples, recollections on G -structures, explanation of the...

Formules explicites pour le caractère de Chern en K -théorie algébrique

Grégory Ginot (2004)

Annales de l'Institut Fourier

Dans cet article on donne une formule explicite pour le caractère de Chern reliant la K - théorie algébrique et l’homologie cyclique négative. On calcule le caractère de Chern des symboles de Steinberg et de Loday et on donne une preuve élémentaire du fait que le caractère de Chern est multiplicatif.

From Poisson algebras to Gerstenhaber algebras

Yvette Kosmann-Schwarzbach (1996)

Annales de l'institut Fourier

Constructing an even Poisson algebra from a Gerstenhaber algebra by means of an odd derivation of square 0 is shown to be possible in the category of Loday algebras (algebras with a non-skew-symmetric bracket, generalizing the Lie algebras, heretofore called Leibniz algebras in the literature). Such “derived brackets” give rise to Lie brackets on certain quotient spaces, and also on certain Abelian subalgebras. The construction of these derived brackets explains the origin of the Lie bracket on...

Currently displaying 1 – 16 of 16

Page 1