-pure submodules.
In this note we obtain a necessary and sufficient condition for a ring to be -weakly regular (i) When is a ring with identity and without divisors of zero (ii) When is a ring without divisors of zero. Further it is proved in a -weakly regular ring with identity and without units every element is a zero divisor.
This paper owes its origins to Pere Menal and his work on Von Neumann Regular (= VNR) rings, especially his work listed in the bibliography on when the tensor product K = A ⊗K B of two algebras over a field k are right self-injective (= SI) or VNR. Pere showed that then A and B both enjoy the same property, SI or VNR, and furthermore that either A and B are algebraic algebras over k (see [M]). This is connected with a lemma in the proof of the Hilbert Nullstellensatz, namely a finite ring extension...
Recently, we have shown that a semiring is completely regular if and only if is a union of skew-rings. In this paper we show that a semiring satisfying can be embedded in a completely regular semiring if and only if is additive separative.
We prove that a finite von Neumann algebra is semisimple if the algebra of affiliated operators of is semisimple. When is not semisimple, we give the upper and lower bounds for the global dimensions of and This last result requires the use of the Continuum Hypothesis.
Let R=k(Q,I) be a finite-dimensional algebra over a field k determined by a bound quiver (Q,I). We show that if R is a simply connected right multipeak algebra which is chord-free and -free in the sense defined below then R has the separation property and there exists a preprojective component of the Auslander-Reiten quiver of the category prin(R) of prinjective R-modules. As a consequence we get in 4.6 a criterion for finite representation type of prin(R) in terms of the prinjective Tits quadratic...
Let K be an algebraically closed field. Let (Q,Sp,I) be a skewed-gentle triple, and let and be the corresponding skewed-gentle pair and the associated gentle pair, respectively. We prove that the skewed-gentle algebra is singularity equivalent to KQ/⟨I⟩. Moreover, we use (Q,Sp,I) to describe the singularity category of . As a corollary, we find that if and only if if and only if .