On the density of fiber sum factors.
Assume that k is a field of characteristic different from 2. We show that if Γ is a strongly simply connected k-algebra of non-polynomial growth, then there exists a special family of pointed Γ-modules, called an independent pair of dense chains of pointed modules. Then it follows by a result of Ziegler that Γ admits a super-decomposable pure-injective module if k is a countable field.
Let Λ be a tubular algebra over an arbitrary base field. We study the Grothendieck group , endowed with the Euler form, and its automorphism group on a purely K-theoretical level as in [7]. Our results serve as tools for classifying the separating tubular families of tubular algebras as in the example [5] and for determining the automorphism group of the derived category of Λ.
We prove that the number of terms in the middle of an almost split sequence in the module category of a cycle-finite artin algebra is bounded by 5.
Associative algebras of fixed dimension over algebraically closed fields of fixed characteristic are considered. It is proved that the class of algebras of tame representation type is axiomatizable. Moreover, finite axiomatizability of this class is equivalent to the conjecture that the algebras of tame representation type form a Zariski-open subset in the variety of algebras.
The representation type of tensor product algebras of finite-dimensional algebras is considered. The characterization of algebras A, B such that A ⊗ B is of tame representation type is given in terms of the Gabriel quivers of the algebras A, B.
We study the problem of classifying triangulated categories with finite-dimensional morphism spaces and finitely many indecomposables over an algebraically closed field . We obtain a new proof of the following result due to Xiao and Zhu: the Auslander-Reiten quiver of such a category is of the form where is a disjoint union of simply-laced Dynkin diagrams and a weakly admissible group of automorphisms of . Then we prove that for ‘most’ groups , the category is standard,i.e.-linearly...
For a finite dimensional algebra A over an algebraically closed field, let T(A) denote the trivial extension of A by its minimal injective cogenerator bimodule. We prove that, if is a tilting module and , then T(A) is tame if and only if T(B) is tame.