Previous Page 2

Displaying 21 – 37 of 37

Showing per page

One-dimensional infinitesimal-birational duality through differential operators

Tomasz Maszczyk (2006)

Fundamenta Mathematicae

The structure of filtered algebras of Grothendieck's differential operators on a smooth fat point in a curve and graded Poisson algebras of their principal symbols is explicitly determined. A related infinitesimal-birational duality realized by a Springer type resolution of singularities and the Fourier transformation is presented. This algebro-geometrical duality is quantized in appropriate sense and its quantum origin is explained.

Présentation jordanienne de l'algèbre de Weyl A₂

J. Alev, F. Dumas (2001)

Annales Polonici Mathematici

Let k be a commutative field. For any a,b∈ k, we denote by J a , b ( k ) the deformation of the 2-dimensional Weyl algebra over k associated with the Jordanian Hecke symmetry with parameters a and b. We prove that: (i) any J a , b ( k ) can be embedded in the usual Weyl algebra A₂(k), and (ii) J a , b ( k ) is isomorphic to A₂(k) if and only if a = b.

Quantization of canonical cones of algebraic curves

Benjamin Enriquez, Alexander Odesskii (2002)

Annales de l’institut Fourier

We introduce a quantization of the graded algebra of functions on the canonical cone of an algebraic curve C , based on the theory of formal pseudodifferential operators. When C is a complex curve with Poincaré uniformization, we propose another, equivalent construction, based on the work of Cohen-Manin-Zagier on Rankin-Cohen brackets. We give a presentation of the quantum algebra when C is a rational curve, and discuss the problem of constructing algebraically “differential liftings”.

Some examples of nil Lie algebras

Ivan P. Shestakov, Efim Zelmanov (2008)

Journal of the European Mathematical Society

Generalizing Petrogradsky’s construction, we give examples of infinite-dimensional nil Lie algebras of finite Gelfand–Kirillov dimension over any field of positive characteristic.

The characteristic variety of a generic foliation

Jorge Vitório Pereira (2012)

Journal of the European Mathematical Society

We confirm a conjecture of Bernstein–Lunts which predicts that the characteristic variety of a generic polynomial vector field has no homogeneous involutive subvarieties besides the zero section and subvarieties of fibers over singular points.

Currently displaying 21 – 37 of 37

Previous Page 2