Décomposition du Galois-module des entiers d’une extension diédrale de degré d’un corps local d’un corps de nombres
Let 𝒯 be the Itô Hopf algebra over an associative algebra 𝓛 into which the universal enveloping algebra 𝓤 of the commutator Lie algebra 𝓛 is embedded as the subalgebra of symmetric tensors. We show that there is a one-to-one correspondence between deformations Δ[h] of the coproduct in 𝒯 and pairs (d⃗[h],d⃖[h]) of right and left differential maps which are deformations of the differential maps for 𝒯 [Hudson and Pulmannová, J. Math. Phys. 45 (2004)]. Corresponding to the multiplicativity and...
We prove that deformations of tame Krull-Schmidt bimodule problems with trivial differential are again tame. Here we understand deformations via the structure constants of the projective realizations which may be considered as elements of a suitable variety. We also present some applications to the representation theory of vector space categories which are a special case of the above bimodule problems.
We develop a new combinatorial method to deal with a degree estimate for subalgebras generated by two elements in different environments. We obtain a lower bound for the degree of the elements in two-generated subalgebras of a free associative algebra over a field of zero characteristic. We also reproduce a somewhat refined degree estimate of Shestakov and Umirbaev for the polynomial algebra, which plays an essential role in the recent celebrated solution of the Nagata conjecture and the strong...
We construct derived equivalences between generalized matrix algebras. We record several corollaries. In particular, we show that the -replicated algebras of two derived equivalent, finite-dimensional algebras are also derived equivalent.
Two-dimensional integrable differential calculi for classes of Ore extensions of the polynomial ring and the Laurent polynomial ring in one variable are constructed. Thus it is concluded that all affine pointed Hopf domains of Gelfand-Kirillov dimension two which are not polynomial identity rings are differentially smooth.