Displaying 381 – 400 of 1097

Showing per page

Lie solvable groups algebras of derived length three.

Meena Sahai (1995)

Publicacions Matemàtiques

Let K be a field of characteristic p > 2 and let G be a group. Necessary and sufficient conditions are obtained so that the group algebra KG is strongly Lie solvable of derived length at most 3. It is also shown that these conditions are equivalent to KG Lie solvable of derived length 3 in characteristic p ≥ 7.

Local cohomology in classical rings.

José Luis Bueso Montero, Pascual Jara Martínez (1992)

Publicacions Matemàtiques

The aim of this paper is to establish the close connection between prime ideals and torsion theories in a non necessarily commutative noetherian ring. We introduce a new definition of support of a module and characterize some kinds of torsion theories in terms of prime ideals. Using the machinery introduced before, we prove a version of the Mayer-Vietoris Theorem for local cohomology and establish a relationship between the classical dimension and the vanishing of the groups of local cohomology...

Matrices over upper triangular bimodules and Δ-filtered modules over quasi-hereditary algebras

Thomas Brüstle, Lutz Hille (2000)

Colloquium Mathematicae

Let Λ be a directed finite-dimensional algebra over a field k, and let B be an upper triangular bimodule over Λ. Then we show that the category of B-matrices mat B admits a projective generator P whose endomorphism algebra End P is quasi-hereditary. If A denotes the opposite algebra of End P, then the functor Hom(P,-) induces an equivalence between mat B and the category ℱ(Δ) of Δ-filtered A-modules. Moreover, any quasi-hereditary algebra whose category of Δ-filtered modules is equivalent to mat...

Matrix rings with summand intersection property

F. Karabacak, Adnan Tercan (2003)

Czechoslovak Mathematical Journal

A ring R has right SIP (SSP) if the intersection (sum) of two direct summands of R is also a direct summand. We show that the right SIP (SSP) is the Morita invariant property. We also prove that the trivial extension of R by M has SIP if and only if R has SIP and ( 1 - e ) M e = 0 for every idempotent e in R . Moreover, we give necessary and sufficient conditions for the generalized upper triangular matrix rings to have SIP.

Currently displaying 381 – 400 of 1097