Commentationes Mathematicae Universitatis Carolinae
In this paper we investigate commutativity of ring with involution which admits a derivation satisfying certain algebraic identities on Jordan ideals of . Some related results for prime rings are also discussed. Finally, we provide examples to show that various restrictions imposed in the hypotheses of our theorems are not superfluous.
Let be a prime ring of char with a nonzero derivation and let be its noncentral Lie ideal. If for some fixed integers , for all , then satisfies , the standard identity in four variables.
Commentationes Mathematicae Universitatis Carolinae
First, we provide an introduction to the theory and algorithms for noncommutative Gröbner bases for ideals in free associative algebras. Second, we explain how to construct universal associative envelopes for nonassociative structures defined by multilinear operations. Third, we extend the work of Elgendy (2012) for nonassociative structures on the 2-dimensional simple associative triple system to the 4- and 6-dimensional systems.
Let be a prime ring with its Utumi ring of quotients and extended centroid . Suppose that is a generalized derivation of and is a noncentral Lie ideal of such that for all , where is a fixed integer. Then one of the following holds:
...
In this paper, we investigate a new type of generalized derivations associated with Hochschild 2-cocycles which is introduced by A.Nakajima (Turk. J. Math. 30 (2006), 403–411). We show that if is a triangular algebra, then every generalized Jordan derivation of above type from into itself is a generalized derivation.
Given a field K of characteristic p > 2 and a finite group G, necessary and sufficient conditions for the unit group U(KG) of the group algebra KG to be centrally metabelian are obtained. It is observed that U(KG) is centrally metabelian if and only if KG is Lie centrally metabelian.