On left -derivations of prime rings
Let be a -torsion free prime ring. Suppose that are automorphisms of . In the present paper it is established that if admits a nonzero Jordan left -derivation, then is commutative. Further, as an application of this resul it is shown that every Jordan left -derivation on is a left -derivation on . Finally, in case of an arbitrary prime ring it is proved that if admits a left -derivation which acts also as a homomorphism (resp. anti-homomorphism) on a nonzero ideal of , then ...