Displaying 61 – 80 of 129

Showing per page

n -strongly Gorenstein graded modules

Zenghui Gao, Jie Peng (2019)

Czechoslovak Mathematical Journal

Let R be a graded ring and n 1 an integer. We introduce and study n -strongly Gorenstein gr-projective, gr-injective and gr-flat modules. Some examples are given to show that n -strongly Gorenstein gr-injective (gr-projective, gr-flat, respectively) modules need not be m -strongly Gorenstein gr-injective (gr-projective, gr-flat, respectively) modules whenever n > m . Many properties of the n -strongly Gorenstein gr-injective and gr-flat modules are discussed, some known results are generalized. Then we investigate...

On the Jacobson radical of graded rings

Andrei V. Kelarev (1992)

Commentationes Mathematicae Universitatis Carolinae

All commutative semigroups S are described such that the Jacobson radical is homogeneous in each ring graded by S .

On the Jacobson radical of strongly group graded rings

Andrei V. Kelarev (1994)

Commentationes Mathematicae Universitatis Carolinae

For any non-torsion group G with identity e , we construct a strongly G -graded ring R such that the Jacobson radical J ( R e ) is locally nilpotent, but J ( R ) is not locally nilpotent. This answers a question posed by Puczyłowski.

On the structure of sequentially Cohen-Macaulay bigraded modules

Leila Parsaei Majd, Ahad Rahimi (2015)

Czechoslovak Mathematical Journal

Let K be a field and S = K [ x 1 , ... , x m , y 1 , ... , y n ] be the standard bigraded polynomial ring over K . In this paper, we explicitly describe the structure of finitely generated bigraded “sequentially Cohen-Macaulay” S -modules with respect to Q = ( y 1 , ... , y n ) . Next, we give a characterization of sequentially Cohen-Macaulay modules with respect to Q in terms of local cohomology modules. Cohen-Macaulay modules that are sequentially Cohen-Macaulay with respect to Q are considered.

Produit tensoriel de matrices, homologie cyclique, homologie des algèbres de Lie

Philippe Gaucher (1994)

Annales de l'institut Fourier

On munit, naturellement, d’un surproduit l’algèbre extérieure de l’homologie cyclique d’une k -algèbre commutative A ( k étant un corps de caractéristique zéro) à l’aide du produit de Loday-Quillen. On munit d’un surproduit l’homologie de l’algèbre de Lie du groupe linéaire général de A à l’aide du produit tensoriel de matrices. On montre que l’isomorphisme d’algèbres de Hopf de Loday-Quillen est compatible avec les surproduits définis ci-dessus. On obtient ainsi une interprétation du produit de Loday-Quillen,...

Currently displaying 61 – 80 of 129