Displaying 661 – 680 of 831

Showing per page

Ultraproduits gradués. Applications.

Ion D. Ion, Constantin Nita (1992)

Publicacions Matemàtiques

Dans ce travail sont définis les ultraproduits d'anneaux et de modules gradués. L'ultraproduit gradué coïncide dans le case d'une famille Ri[X1, ..., Xn], i ∈ I, d'anneaux de polynômes avec le sousanneau d'éléments génerés dans l'ultraproduit usuel par les familles de polynômes de degré total borné.Nous démonstrons que l'ultraproduit d'une famille de modules gradués libres, qui verifie une condition naturelle de finitude et aussi un module gradué libre (Théorème 2.2). Après un étude de l'arithmétique...

Uniqueness of decomposition of pseudo-Riemannian superalgebras

Keli Zheng, Liangyun Chen, Yongzheng Zhang (2014)

Colloquium Mathematicae

This paper is primarily concerned with pseudo-Riemannian superalgebras, which are superalgebras endowed with pseudo-Riemannian non-degenerate supersymmetric consistent bilinear forms. Decompositions of pseudo-Riemannian superalgebras whose left centers are isotropic and whose left centers are not isotropic are investigated.

Weak Baer modules over graded rings

Mark Teply, Blas Torrecillas (1998)

Colloquium Mathematicae

In [2], Fuchs and Viljoen introduced and classified the B * -modules for a valuation ring R: an R-module M is a B * -module if E x t R 1 ( M , X ) = 0 for each divisible module X and each torsion module X with bounded order. The concept of a B * -module was extended to the setting of a torsion theory over an associative ring in [14]. In the present paper, we use categorical methods to investigate the B * -modules for a group graded ring. Our most complete result (Theorem 4.10) characterizes B * -modules for a strongly graded ring R...

Weak dimension of group-graded rings.

Angel del Río (1990)

Publicacions Matemàtiques

We study the weak dimension of a group-graded ring using methods developed in [B1], [Q] and [R]. We prove that if R is a G-graded ring with G locally finite and the order of every subgroup of G is invertible in R, then the graded weak dimension of R is equal to the ungraded one.

Weak Polynomial Identities for M1,1(E)

Di Vincenzo, Onofrio, La Scala, Roberto (2001)

Serdica Mathematical Journal

* Partially supported by Universita` di Bari: progetto “Strutture algebriche, geometriche e descrizione degli invarianti ad esse associate”.We compute the cocharacter sequence and generators of the ideal of the weak polynomial identities of the superalgebra M1,1 (E).

Weighted w -core inverses in rings

Liyun Wu, Huihui Zhu (2023)

Czechoslovak Mathematical Journal

Let R be a unital * -ring. For any a , s , t , v , w R we define the weighted w -core inverse and the weighted dual s -core inverse, extending the w -core inverse and the dual s -core inverse, respectively. An element a R has a weighted w -core inverse with the weight v if there exists some x R such that a w x v x = x , x v a w a = a and ( a w x ) * = a w x . Dually, an element a R has a weighted dual s -core inverse with the weight t if there exists some y R such that y t y s a = y , a s a t y = a and ( y s a ) * = y s a . Several characterizations of weighted w -core invertible and weighted dual s -core invertible...

Currently displaying 661 – 680 of 831