Displaying 21 – 40 of 2671

Showing per page

A classification for real and complex finite dimensional * -algebras

Mauro Meschiari (1983)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

La presente Nota contiene una lista di J -algebre reali di dimensione finita ed una lista di J -algebre complesse di dimensione finita tali che: 1) due elementi distinti di ogni lista non sono mai J -isomorfi; 2) ogni J -algebra di dimensione finita reale (complessa) è J —isomorfa su 𝐑 (su 𝐂 ) alla somma diretta, finita, di J -algebre reali (complesse) elencate nella lista. In altre parole, diamo qui una classificazione completa delle J —algebre reali e delle J -algebre complesse di dimensione finita. Nel...

A classification of low dimensional multiplicative Hom-Lie superalgebras

Chunyue Wang, Qingcheng Zhang, Zhu Wei (2016)

Open Mathematics

We study a twisted generalization of Lie superalgebras, called Hom-Lie superalgebras. It is obtained by twisting the graded Jacobi identity by an even linear map. We give a complete classification of the complex multiplicative Hom-Lie superalgebras of low dimensions.

A classification of Poisson homogeneous spaces of complex reductive Poisson-Lie groups

Eugene Karolinsky (2000)

Banach Center Publications

Let G be a complex reductive connected algebraic group equipped with the Sklyanin bracket. A classification of Poisson homogeneous G-spaces with connected isotropy subgroups is given. This result is based on Drinfeld's correspondence between Poisson homogeneous G-spaces and Lagrangian subalgebras in the double D𝖌 (here 𝖌 = Lie G). A geometric interpretation of some Poisson homogeneous G-spaces is also proposed.

A cluster algebra approach to q -characters of Kirillov–Reshetikhin modules

David Hernandez, Bernard Leclerc (2016)

Journal of the European Mathematical Society

We describe a cluster algebra algorithm for calculating q -characters of Kirillov–Reshetikhin modules for any untwisted quantum affine algebra U q ( 𝔤 ^ ) . This yields a geometric q -character formula for tensor products of Kirillov–Reshetikhin modules. When 𝔤 is of type A , D , E , this formula extends Nakajima’s formula for q -characters of standard modules in terms of homology of graded quiver varieties.

A constructive method to determine the variety of filiform Lie algebras

F. J. Echarte, M. C. Márquez, J. Núñez (2006)

Czechoslovak Mathematical Journal

In this paper we use cohomology of Lie algebras to study the variety of laws associated with filiform Lie algebras of a given dimension. As the main result, we describe a constructive way to find a small set of polynomials which define this variety. It allows to improve previous results related with the cardinal of this set. We have also computed explicitly these polynomials in the case of dimensions 11 and 12.

Currently displaying 21 – 40 of 2671