A computer-based approach to the classification of nilpotent Lie algebras.
In this paper we use cohomology of Lie algebras to study the variety of laws associated with filiform Lie algebras of a given dimension. As the main result, we describe a constructive way to find a small set of polynomials which define this variety. It allows to improve previous results related with the cardinal of this set. We have also computed explicitly these polynomials in the case of dimensions 11 and 12.
For every m ∈ ℂ ∖ 0, −2 and every nonnegative integer k we define the vertex operator (super)algebra D m,k having two generators and rank . If m is a positive integer then D m,k can be realized as a subalgebra of a lattice vertex algebra. In this case, we prove that D m,k is a regular vertex operator (super) algebra and find the number of inequivalent irreducible modules.
We present a short and rather self-contained introduction to the theory of finite-dimensional division algebras, setting out from the basic definitions and leading up to recent results and current directions of research. In Sections 2-3 we develop the general theory over an arbitrary ground field k, with emphasis on the trichotomy of fields imposed by the dimensions in which a division algebra exists, the groupoid structure of the level subcategories 𝒟ₙ(k), and the role played by the irreducible...
We find examples of polynomials whose eigenring is a central simple algebra over the field .
In this article, a survey of the theory of Jordan-Banach triple systems is presented. Most of the recent relevant results in this area have been included, though no proofs are given.