Filtrations on generalized Verma modules for Hermitian symmetric pairs.
In questo lavoro vengono studiate le algebre di Albert-Frank-Shalev. Queste sono algebre di Lie modulari di dimensione infinita, ottenute da un loop di certe algebre semplici di dimensione finita. Si dimostra che le algebre di Albert-Frank-Shalev sono unicamente determinate, a meno di elementi centrali o secondo centrali, da un certo quoziente finito-dimensionale. Tale risultato si ottiene dando la presentazione finita di un'algebra il cui quoziente sul secondo centro (infinito-dimensionale) è isomorfo...
We investigate the finite-dimensional Lie groups whose points are separated by the continuous homomorphisms into groups of invertible elements of locally convex algebras with continuous inversion that satisfy an appropriate completeness condition. We find that these are precisely the linear Lie groups, that is, the Lie groups which can be faithfully represented as matrix groups. Our method relies on proving that certain finite-dimensional Lie subalgebras of algebras with continuous inversion commute...
Le but de cet article est de formuler une hypothèse permettant d’affirmer que l’homologie d’une super algèbre de Lie à valeurs dans un module de dimension finie est de dimension finie
The purpose of this note is to show how calculi on unital associative algebra with universal right bimodule generalize previously studied constructions by Pusz and Woronowicz [1989] and by Wess and Zumino [1990] and that in this language results are in a natural context, are easier to describe and handle. As a by-product we obtain intrinsic, coordinate-free and basis-independent generalization of the first order noncommutative differential calculi with partial derivatives.
In this communication, I recall the main results [BDK1] in the classification of finite Lie pseudoalgebras, which generalize several previously known algebraic structures, and announce some new results [BDK2] concerning their representation theory.