The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 1121 –
1140 of
2676
We define an operator α on ℂ³ ⊗ ℂ³ associated with the quantum group , which satisfies the Yang-Baxter equation and a cubic equation (α² - 1)(α + q²) = 0. This operator can be extended to a family of operators on with 0 ≤ j ≤ n - 2. These operators generate the cubic Hecke algebra associated with the quantum group . The purpose of this note is to present the construction.
We know well difference Picard-Vessiot theory, Galois theory of linear difference equations. We propose a general Galois theory of difference equations that generalizes Picard-Vessiot theory. For every difference field extension of characteristic , we attach its Galois group, which is a group of coordinate transformation.
A regular normal parabolic geometry of type on a manifold gives rise to sequences of invariant differential operators, known as the curved version of the BGG resolution. These sequences are constructed from the normal covariant derivative on the corresponding tractor bundle , where is the normal Cartan connection. The first operator in the sequence is overdetermined and it is well known that yields the prolongation of this operator in the homogeneous case . Our first main result...
In Gilg (2000, 2001) the author introduces the notion of filiform Lie superalgebras, generalizing the filiform Lie algebras studied by Vergne in the sixties. In these appers, the superalgebras whose even part is isomorphic to the model filiform Lie algebra Ln are studied and classified in low dimensions. Here we consider a class of superalgebras whose even part is the filiform, naturally graded Lie algebra Qn, which only exists in even dimension as a consequence of the centralizer property. Certain...
In this paper we prove that a nondegenerate Jordan algebra satisfying the descending chain condition on the principal inner ideals, also satisfies the ascending chain condition on the annihilators of the principal inner ideals. We also study annihilators in Jordan algebras without nilpotent elements and in JB-algebras.
We define a type of biquandle which is a generalization of symplectic quandles. We use the extra structure of these bilinear biquandles to define new knot and link invariants and give some examples.
Let be a complex reductive Lie algebra and be any reductive in subalgebra. We call a -module bounded if the -multiplicities of are uniformly bounded. In this paper we initiate a general study of simple bounded -modules. We prove a strong necessary condition for a subalgebra to be bounded (Corollary 4.6), i.e. to admit an infinite-dimensional simple bounded -module, and then establish a sufficient condition for a subalgebra to be bounded (Theorem 5.1). As a result we are able to...
Currently displaying 1121 –
1140 of
2676