On Lie powers of regular modules in characteristic 2
Let be an associative and commutative ring with , a subring of such that , an integer. The paper describes subrings of the general linear Lie ring that contain the Lie ring of all traceless matrices over .
In this paper the structure of the maximal elements of the lattice of subalgebras of central simple non-Lie Malcev algebras is considered. Such maximal subalgebras are studied in two ways: first by using theoretical results concerning Malcev algebras, and second by using the close connection between these simple non-Lie Malcev algebras and the Cayley-Dickson algebras, which have been extensively studied (see [4]).
We reduce the problem on multiplicities of simple subquotients in an -stratified generalized Verma module to the analogous problem for classical Verma modules.
Let be a reductive algebraic group, a parabolic subgroup of with unipotent radical , and a closed connected subgroup of which is normalized by . We show that acts on with finitely many orbits provided is abelian. This generalizes a well-known finiteness result, namely the case when is central in . We also obtain an analogous result for the adjoint action of on invariant linear subspaces of the Lie algebra of which are abelian Lie algebras. Finally, we discuss a connection...
In this note we introduce the concept of Cayley homomorphism which is closely related with those of composition algebra and normalized orthogonal multiplication. The key result shows the existence of certain types of Cayley homomorphisms for infinite dimension. As an application we prove the existence of left division infinite-dimensional complete normed real algebras with left unity.
Results on derivations and automorphisms of some quantum and classical Poisson algebras, as well as characterizations of manifolds by the Lie structure of such algebras, are revisited and extended. We prove in particular a somewhat unexpected fact that the algebras of linear differential operators acting on smooth sections of two real vector bundles of rank 1 are isomorphic as Lie algebras if and only if the base manifolds are diffeomorphic, whether or not the line bundles themselves are isomorphic....
The model of generalized quons is described in an algebraic way as certain quasiparticle states with statistics determined by a commutation factor on an abelian group. Quantization is described in terms of quantum Weyl algebras. The corresponding commutation relations and scalar product are also given.