The normality of closures of orbits in a Lie algebra.
[For the entire collection see Zbl 0742.00067.]The Penrose transform is always based on a diagram of homogeneous spaces. Here the case corresponding to the orthogonal group is studied by means of Clifford analysis [see F. Brackx, R. Delanghe and F. Sommen: Clifford analysis (1982; Zbl 0529.30001)], and is presented a simple approach using the Dolbeault realization of the corresponding cohomology groups and a simple calculus with differential forms (the Cauchy integral formula for solutions of...
The “quantum duality principle” states that the quantization of a Lie bialgebra – via a quantum universal enveloping algebra (in short, QUEA) – also provides a quantization of the dual Lie bialgebra (through its associated formal Poisson group) – via a quantum formal series Hopf algebra (QFSHA) — and, conversely, a QFSHA associated to a Lie bialgebra (via its associated formal Poisson group) yields a QUEA for the dual Lie bialgebra as well; more in detail, there exist functors and , inverse to...
The questions when a derivation on a Jordan-Banach algebra has quasi-nilpotent values, and when it has the range in the radical, are discussed.
[For the entire collection see Zbl 0742.00067.]Let be the set of hyperplanes in , the unit sphere of , the exterior of the unit ball, the set of hyperplanes not passing through the unit ball, the Radon transform, its dual. as operator from to is a closable, densely defined operator, denotes the operator given by if the integral exists for a.e. Then the closure of is the adjoint of . The author shows that the Radon transform and its dual can be linked by two operators...