Relative congruence distributivity within quasivarieties of nearly associative Φ-algebras
Starting by the famous paper by Kirillov, local Lie algebras of functions over smooth manifolds were studied very intensively by mathematicians and physicists. In the present paper we study local Lie algebras of pairs of functions which generate infinitesimal symmetries of almost-cosymplectic-contact structures of odd dimensional manifolds.
In this article, we study the structure of Fock modules over super Virasoro algebras. As an application, we construct Bechi-Rouet–Stora–Tyutin type resolutions for super minimal models and their descendants.
On donne une condition nécessaire et suffisante pour l’existence de modules de dimension finie sur l’algèbre de Cherednik rationnelle associée à un système de racines.
Dans un travail précédent nous avons défini et étudié la fonction zêta associée à une représentation d’une algèbre de Jordan euclidienne déployée et à un réseau dans l’espace de la représentation. Nous avons démontré la convergence dans un demi-plan, établi l’existence d’un prolongement méromorphe et d’une équation fonctionnelle scalaire. Cette fonction est une généralisation de la fonction zêta de Koecher; elle est donnée dans son domaine de convergence, par une série qui somme sur certains éléments...
[For the entire collection see Zbl 0742.00067.]The Tanaka-Krein type equivalence between Hopf algebras and functored monoidal categories provides the heuristic strategy of this paper. The author introduces the notion of a double cross product of monoidal categories as a generalization of double cross product of Hopf algebras, and explains some of the motivation from physics (the representation theory for double quantum groups).The Hopf algebra constructions are formulated in terms of monoidal categories...