Loading [MathJax]/extensions/MathZoom.js
We first discuss the construction by Pérez-Izquierdo and Shestakov of universal nonassociative enveloping algebras of Malcev algebras. We then describe recent results on explicit structure constants for the universal enveloping algebras (both nonassociative and alternative) of the 4-dimensional solvable Malcev algebra and the 5-dimensional nilpotent Malcev algebra. We include a proof (due to Shestakov) that the universal alternative enveloping algebra of the real 7-dimensional simple Malcev algebra...
Let be a simple algebraic group over an algebraically closed field of characteristic 0, and . Let be an -triple in with being a long root vector in . Let be the -invariant bilinear form on with and let be such that for all . Let be the Slodowy slice at through the adjoint orbit of and let be the enveloping algebra of ; see [31]. In this article we give an explicit presentation of by generators and relations. As a consequence we deduce that contains an ideal...
Let be a (generalized) flag manifold of a complex semisimple Lie group . We
investigate the problem of constructing a graded star product on which corresponds to a -equivariant quantization of symbols into twisted differential
operators acting on half-forms on . We construct, when is generated by the
momentum functions for , a preferred choice of where has the form . Here are operators on . In the known examples, () is not a
differential operator, and so the star product ...
We determine the length of composition series of projective modules of G-transitive algebras with an Auslander-Reiten component of Euclidean tree class. We thereby correct and generalize a result of Farnsteiner [Math. Nachr. 202 (1999)]. Furthermore we show that modules with certain length of composition series are periodic. We apply these results to G-transitive blocks of the universal enveloping algebras of restricted p-Lie algebras and prove that G-transitive principal blocks only allow components...
Currently displaying 1 –
5 of
5