Epsilon systems on geometric crystals of type .
We show that the family of Podleś spheres is complete under equivariant Morita equivalence (with respect to the action of quantum SU(2)), and determine the associated orbits. We also give explicit formulas for the actions which are equivariantly Morita equivalent with the quantum projective plane. In both cases, the computations are made by examining the localized spectral decomposition of a generalized Casimir element.
We define and compare, by model-theoretical methods, some exponentiations over the quantum algebra . We discuss two cases, according to whether the parameter is a root of unity. We show that the universal enveloping algebra of embeds in a non-principal ultraproduct of , where varies over the primitive roots of unity.