Calculations with the Temperley - Lieb algebra.
In this paper we study the BGG-categories associated to quantum groups. We prove that many properties of the ordinary BGG-category for a semisimple complex Lie algebra carry over to the quantum case. Of particular interest is the case when is a complex root of unity. Here we prove a tensor decomposition for both simple modules, projective modules, and indecomposable tilting modules. Using the known Kazhdan-Lusztig conjectures for and for finite dimensional -modules we are able to determine...
Nous construisons des généralisations des complexes de Koszul, associées à des symétries vérifiant l’équation de Yang-Baxter. Certains de ces complexes sont acycliques et permettent de calculer l’homologie de Hochschild et cyclique de déformations quantiques d’algèbres symétriques et extérieures. Nous donnons des résultats précis pour l’espace affine quantique multiparamétré. Il est également possible de définir des complexes de Koszul pour des algèbres enveloppantes et de Sridharan d’algèbres de...
In this paper, we develop the crystal basis theory for the quantum queer superalgebra . We define the notion of crystal bases and prove the tensor product rule for -modules in the category . Our main theorem shows that every -module in the category has a unique crystal basis.
We define the -restriction and -induction functors on the category of the cyclotomic rational double affine Hecke algebras. This yields a crystal on the set of isomorphism classes of simple modules, which is isomorphic to the crystal of a Fock space.