A construction of some ideals in affine vertex algebras.
For every m ∈ ℂ ∖ 0, −2 and every nonnegative integer k we define the vertex operator (super)algebra D m,k having two generators and rank . If m is a positive integer then D m,k can be realized as a subalgebra of a lattice vertex algebra. In this case, we prove that D m,k is a regular vertex operator (super) algebra and find the number of inequivalent irreducible modules.