Page 1 Next

Displaying 1 – 20 of 21

Showing per page

Kac-Moody groups, hovels and Littelmann paths

Stéphane Gaussent, Guy Rousseau (2008)

Annales de l’institut Fourier

We give the definition of a kind of building for a symmetrizable Kac-Moody group over a field K endowed with a discrete valuation and with a residue field containing . Due to the lack of some important property of buildings, we call it a hovel. Nevertheless, some good ones remain, for example, the existence of retractions with center a sector-germ. This enables us to generalize many results proved in the semisimple case by S. Gaussent and P. Littelmann. In particular, if K = ( ( t ) ) , the geodesic segments...

Knot theory with the Lorentz group

João Faria Martins (2005)

Fundamenta Mathematicae

We analyse perturbative expansions of the invariants defined from unitary representations of the Quantum Lorentz Group in two different ways, namely using the Kontsevich Integral and weight systems, and the R-matrix in the Quantum Lorentz Group defined by Buffenoir and Roche. The two formulations are proved to be equivalent; and they both yield ℂ[[h]]h-valued knot invariants related with the Melvin-Morton expansion of the Coloured Jones Polynomial.

Currently displaying 1 – 20 of 21

Page 1 Next