Sewn sphere cohomologies for vertex algebras
We define sewn elliptic cohomologies for vertex algebras by sewing procedure for coboundary operators.
We define sewn elliptic cohomologies for vertex algebras by sewing procedure for coboundary operators.
We prove a singular version of Beilinson–Bernstein localization for a complex semi-simple Lie algebra following ideas from the positive characteristic case settled by [BMR06]. We apply this theory to translation functors, singular blocks in the Bernstein–Gelfand–Gelfand category O and Whittaker modules.
The Kähler quotient of a complex reductive Lie group relative to the conjugation action carries a complex algebraic stratified Kähler structure which reflects the geometry of the group. For the group SL(n,ℂ), we interpret the resulting singular Poisson-Kähler geometry of the quotient in terms of complex discriminant varieties and variants thereof.