Previous Page 3

Displaying 41 – 54 of 54

Showing per page

Gradedness of the set of rook placements in A n - 1

Mikhail V. Ignatev (2021)

Communications in Mathematics

A rook placement is a subset of a root system consisting of positive roots with pairwise non-positive inner products. To each rook placement in a root system one can assign the coadjoint orbit of the Borel subgroup of a reductive algebraic group with this root system. Degenerations of such orbits induce a natural partial order on the set of rook placements. We study combinatorial structure of the set of rook placements in A n - 1 with respect to a slightly different order and prove that this poset is...

Graphs associated with nilpotent Lie algebras of maximal rank.

Eduardo Díaz, Rafael Fernández-Mateos, Desamparados Fernández-Ternero, Juan Núñez (2003)

Revista Matemática Iberoamericana

In this paper, we use the graphs as a tool to study nilpotent Lie algebras. It implies to set up a link betwcen graph theory and Lie theory. To do this, it is already known that every nilpotent Lie algebra of maximal rank is associated with a generalized Cartan matrix A and it ils isomorphic to a quotient of the positive part n+ of the KacMoody algebra g(A). Then, if A is affine, we can associate n+ with a directed graph (from now on, we use the term digraph) and we can also associate a subgraph...

Groupe de Galois différentiel local et représentation adjointe

Elie Compoint, Anne Duval (2007)

Annales de la faculté des sciences de Toulouse Mathématiques

Dans cet article on s’intéresse à la représentation adjointe du tore exponentiel sur l’algèbre de Lie du groupe de Galois différentiel local. Nous proposons un algorithme pour réduire les sous-espaces poids de dimension supérieure à 1 à des sous-espaces de racines. Ce faisant, on construit un tore (en général) maximal qui contient le tore exponentiel. Au cours de ce travail on est amené à étudier la régularité du tore exponentiel dans le groupe de Galois local.

Growth of some varieties of Leibniz-Poisson algebras

Ratseev, S. M. (2011)

Serdica Mathematical Journal

2010 Mathematics Subject Classification: 17A32, 17B63.Let V be a variety of Leibniz-Poisson algebras over an arbitrary field whose ideal of identities contains the identities {{x1,y1},{x2,y2},ј,{xm,ym}} = 0, {x1,y1}·{x2,y2}· ј ·{xm,ym} = 0 for some m. It is shown that the exponent of V exists and is an integer.

Currently displaying 41 – 54 of 54

Previous Page 3