Displaying 181 – 200 of 399

Showing per page

Le foncteur V 𝔽 2 [ V ] 3 entre 𝔽 2 -espaces vectoriels est noethérien

Aurélien Djament (2009)

Annales de l’institut Fourier

Les foncteurs entre espaces vectoriels, ou représentations génériques des groupes linéaires d’après Kuhn, interviennent en topologie algébrique et en K -théorie comme en théorie des représentations. Nous présentons ici une nouvelle méthode pour aborder les problèmes de finitude et la dimension de Krull dans ce contexte.Plus précisément, nous démontrons que, dans la catégorie des foncteurs entre espaces vectoriels sur 𝔽 2 , le produit tensoriel entre P 3 , où P désigne le foncteur projectif V 𝔽 2 [ V ] , et un foncteur...

Local cohomology and support for triangulated categories

Dave Benson, Srikanth B. Iyengar, Henning Krause (2008)

Annales scientifiques de l'École Normale Supérieure

We propose a new method for defining a notion of support for objects in any compactly generated triangulated category admitting small coproducts. This approach is based on a construction of local cohomology functors on triangulated categories, with respect to a central ring of operators. Special cases are, for example, the theory for commutative noetherian rings due to Foxby and Neeman, the theory of Avramov and Buchweitz for complete intersection local rings, and varieties for representations of...

Localization and colocalization in tilting torsion theory for coalgebras

Yuan Li, Hailou Yao (2021)

Czechoslovak Mathematical Journal

Tilting theory plays an important role in the representation theory of coalgebras. This paper seeks how to apply the theory of localization and colocalization to tilting torsion theory in the category of comodules. In order to better understand the process, we give the (co)localization for morphisms, (pre)covers and special precovers. For that reason, we investigate the (co)localization in tilting torsion theory for coalgebras.

Loop cohomology

Kenneth Walter Johnson, Charles R. Leedham-Green (1990)

Czechoslovak Mathematical Journal

Loop spaces of the Q-construction

A. Neeman (2000)

Fundamenta Mathematicae

Giffen in [1], and Gillet-Grayson in [3], independently found a simplicial model for the loop space on Quillen's Q-construction. Their proofs work for exact categories. Here we generalise the results to the K-theory of triangulated categories. The old proofs do not generalise. Our new proof, aside from giving the generalised result, can also be viewed as an amusing new proof of the old theorems of Giffen and Gillet-Grayson.

Matrix factorizations and singularity categories for stacks

Alexander Polishchuk, Arkady Vaintrob (2011)

Annales de l’institut Fourier

We study matrix factorizations of a potential W which is a section of a line bundle on an algebraic stack. We relate the corresponding derived category (the category of D-branes of type B in the Landau-Ginzburg model with potential W) with the singularity category of the zero locus of W generalizing a theorem of Orlov. We use this result to construct push-forward functors for matrix factorizations with relatively proper support.

Minimal resolutions and other minimal models.

Agustí Roig (1993)

Publicacions Matemàtiques

In many situations, minimal models are used as representatives of homotopy types. In this paper we state this fact as an equivalence of categories. This equivalence follows from an axiomatic definition of minimal objects. We see that this definition includes examples such as minimal resolutions of Eilenberg-Nakayama-Tate, minimal fiber spaces of Kan and Λ-minimal Λ-extensions of Halperin. For the first one, this is done by generalizing the construction of minimal resolutions of modules to complexes....

Moore categories.

Rodelo, Diana (2004)

Theory and Applications of Categories [electronic only]

Currently displaying 181 – 200 of 399