On derived categories and derived functors.
We classify, up to derived (equivalently, tilting-cotilting) equivalence, all nondegenerate gentle two-cycle algebras. We also give a partial classification and formulate a conjecture in the degenerate case.
An -exact category is a pair consisting of an additive category and a class of sequences with terms satisfying certain axioms. We introduce -weakly idempotent complete categories. Then we prove that an additive -weakly idempotent complete category together with the class of all contractible sequences with terms is an -exact category. Some properties of the class are also discussed.
We investigate degenerations and derived equivalences of tame selfinjective algebras having no simply connected Galois coverings but the stable Auslander-Reiten quiver consisting only of tubes, discovered recently in [4].
In the theory of accessible categories, pure subobjects, i.e. filtered colimits of split monomorphisms, play an important role. Here we investigate pure quotients, i.e., filtered colimits of split epimorphisms. For example, in abelian, finitely accessible categories, these are precisely the cokernels of pure subobjects, and pure subobjects are precisely the kernels of pure quotients.
Quasitilted algebras have been introduced as a proper generalization of tilted algebras. In an earlier article we determined necessary conditions for one-point extensions of decomposable finite-dimensional hereditary algebras to be quasitilted and not tilted. In this article we study algebras satisfying these necessary conditions in order to investigate to what extent the conditions are sufficient.