Previous Page 5

Displaying 81 – 99 of 99

Showing per page

Taylor towers for Γ -modules

Birgit Richter (2001)

Annales de l’institut Fourier

We consider Taylor approximation for functors from the small category of finite pointed sets Γ to modules and give an explicit description for the homology of the layers of the Taylor tower. These layers are shown to be fibrant objects in a suitable closed model category structure. Explicit calculations are presented in characteristic zero including an application to higher order Hochschild homology. A spectral sequence for the homology of the homotopy fibres of this approximation is provided.

Troesch complexes and extensions of strict polynomial functors

Antoine Touzé (2012)

Annales scientifiques de l'École Normale Supérieure

We develop a new approach of extension calculus in the category of strict polynomial functors, based on Troesch complexes. We obtain new short elementary proofs of numerous classical Ext -computations as well as new results. In particular, we get a cohomological version of the “fundamental theorems” from classical invariant theory for  G L n for  n big enough (and we give a conjecture for smaller values of  n ). We also study the “twisting spectral sequence” E s , t ( F , G , r ) converging to the extension groups Ext 𝒫 𝕜 * ( F ( r ) , G ( r ) ) between the...

Une formule pour les extensions de foncteurs composés

Alain Troesch (2003)

Fundamenta Mathematicae

Let p be a prime, and let ℱ be the category of functors from the finite p -vector spaces to all p -vector spaces. The object Id of ℱ is the inclusion functor. Let F and G be two objects in ℱ. If F and G satisfy suitable conditions, the main result of this paper allows one to compute E x t * ( I d , G F ) from the knowledge of E x t * ( I d , F ) and E x t * ( I d , G ) .

Une résolution injective des puissances symétriques tordues

Alain Troesch (2005)

Annales de l’institut Fourier

Dans cet article, on construit une résolution injective explicite des puissances symétriques tordues S * ( j ) dans la catégorie des foncteurs strictement polynomiaux. Cette construction généralise à toute caractéristique la construction donnée par Friedlander et Suslin en caractéristique 2.

Currently displaying 81 – 99 of 99

Previous Page 5