Displaying 301 – 320 of 671

Showing per page

How to construct a Hovey triple from two cotorsion pairs

James Gillespie (2015)

Fundamenta Mathematicae

Let be an abelian category, or more generally a weakly idempotent complete exact category, and suppose we have two complete hereditary cotorsion pairs ( , ˜ ) and ( ˜ , ) in satisfying ˜ and ˜ = ˜ . We show how to construct a (necessarily unique) abelian model structure on with (resp. ˜ ) as the class of cofibrant (resp. trivially cofibrant) objects, and (resp. ˜ ) as the class of fibrant (resp. trivially fibrant) objects.

Images directes cohomologiques dans les catégories de modèles

Denis-Charles Cisinski (2003)

Annales mathématiques Blaise Pascal

Ces notes sont consacrées à la construction des limites homotopiques, et plus généralement, des images directes cohomologiques dans une catégorie de modèles arbitraire admettant des petites limites projectives. En outre, la théorie des dérivateurs de Grothendieck est introduite, à la fois en tant que motivation pour l’étude de telles structures, et en tant qu’outil de démonstration.

Injective models of G -disconnected simplicial sets

Marek Golasiński (1997)

Annales de l'institut Fourier

We generalize the results by G.V. Triantafillou and B. Fine on G -disconnected simplicial sets. An existence of an injective minimal model for a complete 𝕀 -algebra is presented, for any E I -category 𝕀 . We then make use of the E I -category 𝒪 ( G , X ) associated with a G -simplicial set X to apply these results to the category of G -simplicial sets.Finally, we describe the rational homotopy type of a nilpotent G -simplicial set by means of its injective minimal model.

Currently displaying 301 – 320 of 671