Page 1 Next

Displaying 1 – 20 of 60

Showing per page

Salvetti complex, spectral sequences and cohomology of Artin groups

Filippo Callegaro (2014)

Annales de la faculté des sciences de Toulouse Mathématiques

The aim of this short survey is to give a quick introduction to the Salvetti complex as a tool for the study of the cohomology of Artin groups. In particular we show how a spectral sequence induced by a filtration on the complex provides a very natural and useful method to study recursively the cohomology of Artin groups, simplifying many computations. In the last section some examples of applications are presented.

Separable K-linear categories

Andrei Chiteș, Costel Chiteș (2010)

Open Mathematics

We define and investigate separable K-linear categories. We show that such a category C is locally finite and that every left C-module is projective. We apply our main results to characterize separable linear categories that are spanned by groupoids or delta categories.

Serre functors for Lie algebras and superalgebras

Volodymyr Mazorchuk, Vanessa Miemietz (2012)

Annales de l’institut Fourier

We propose a new realization, using Harish-Chandra bimodules, of the Serre functor for the BGG category 𝒪 associated to a semi-simple complex finite dimensional Lie algebra. We further show that our realization carries over to classical Lie superalgebras in many cases. Along the way we prove that category 𝒪 and its parabolic generalizations for classical Lie superalgebras are categories with full projective functors. As an application we prove that in many cases the endomorphism algebra of the basic...

Currently displaying 1 – 20 of 60

Page 1 Next