On the equivalence of Quillen's and Swan's -theories.
For groups that satisfy the Isomorphism Conjecture in lower K-theory, we show that the cokernel of the forget-control K₀-groups is composed by the NK₀-groups of the finite subgroups. Using this information, we can calculate the exponent of each element in the cokernel in terms of the torsion of the group.
We consider a class of nonlocal operators associated with a compact Lie group G acting on a smooth manifold. A notion of symbol of such operators is introduced and an index formula for elliptic elements is obtained. The symbol in this situation is an element of a noncommutative algebra (crossed product by G) and to obtain an index formula, we define the Chern character for this algebra in the framework of noncommutative geometry.
We compute the -theory of -algebras generated by the left regular representation of left Ore semigroups satisfying certain regularity conditions. Our result describes the -theory of these semigroup -algebras in terms of the -theory for the reduced group -algebras of certain groups which are typically easier to handle. Then we apply our result to specific semigroups from algebraic number theory.
Let LX be the space of free loops on a simply connected manifold X. When the real cohomology of X is a tensor product of algebras generated by a single element, we determine the algebra structure of the real cohomology of LX by using the cyclic bar complex of the de Rham complex Ω(X) of X. In consequence, the algebra generators of the real cohomology of LX can be represented by differential forms on LX through Chen’s iterated integral map. Let be the circle group. The -equivariant cohomology...
For a typical example of a complete discrete valuation field of type II in the sense of [12], we determine the graded quotients for all . In the Appendix, we describe the Milnor -groups of a certain local ring by using differential modules, which are related to the theory of syntomic cohomology.