Displaying 101 – 120 of 128

Showing per page

Splitting obstructions and properties of objects in the Nil categories

Tadeusz Koźniewski (1999)

Fundamenta Mathematicae

We show that the objects of Bass-Farrell categories which represent 0 in the corresponding Nil groups are precisely those which are stably triangular. This extends to Waldhausen's Nil group of the amalgamated free product with index 2 factors. Applications include a description of Cappell's special UNil group and reformulations of those splitting and fibering theorems which use the Nil groups.

Stable short exact sequences and the maximal exact structure of an additive category

Wolfgang Rump (2015)

Fundamenta Mathematicae

It was recently proved that every additive category has a unique maximal exact structure, while it remained open whether the distinguished short exact sequences of this canonical exact structure coincide with the stable short exact sequences. The question is answered by a counterexample which shows that none of the steps to construct the maximal exact structure can be dropped.

The Hochschild cohomology of a closed manifold

Yves Felix, Jean-Claude Thomas, Micheline Vigué-Poirrier (2004)

Publications Mathématiques de l'IHÉS

Let M be a closed orientable manifold of dimension dand 𝒞 * ( M ) be the usual cochain algebra on M with coefficients in a fieldk. The Hochschild cohomology of M, H H * ( 𝒞 * ( M ) ; 𝒞 * ( M ) ) is a graded commutative and associative algebra. The augmentation map ε : 𝒞 * ( M ) 𝑘 induces a morphism of algebras I : H H * ( 𝒞 * ( M ) ; 𝒞 * ( M ) ) H H * ( 𝒞 * ( M ) ; 𝑘 ) . In this paper we produce a chain model for the morphism I. We show that the kernel of I is a nilpotent ideal and that the image of I is contained in the center of H H * ( 𝒞 * ( M ) ; 𝑘 ) , which is in general quite small. The algebra H H * ( 𝒞 * ( M ) ; 𝒞 * ( M ) ) is expected to be isomorphic...

Currently displaying 101 – 120 of 128