Some embedding theorems in varieties of semigroups.
*Research partially supported by INTAS grant 97-1644.Consider the Deligne-Simpson problem: give necessary and sufficient conditions for the choice of the conjugacy classes Cj ⊂ GL(n,C) (resp. cj ⊂ gl(n,C)) so that there exist irreducible (p+1)-tuples of matrices Mj ∈ Cj (resp. Aj ∈ cj) satisfying the equality M1 . . .Mp+1 = I (resp. A1+. . .+Ap+1 = 0). The matrices Mj and Aj are interpreted as monodromy operators and as matrices-residua of fuchsian systems on Riemann’s sphere. We give new examples...
In this paper we show that there exists an infinite family of pairwise non-isomorphic entropic quasigroups with quasi-identity which are directly indecomposable and they are two-generated.
In this paper we investigate two new classes of torsion-free Abelian groups which arise in a natural way from the notion of a torsion-free Crawley group. A group is said to be an Erdős group if for any pair of isomorphic pure subgroups with , there is an automorphism of mapping onto ; it is said to be a weak Crawley group if for any pair of isomorphic dense maximal pure subgroups, there is an automorphism mapping onto . We show that these classes are extensive and pay attention to...
In this note we construct examples of geometric 3-orbifolds with (orbifold) fundamental group isomorphic to a (Z-extension of a) generalized Coxeter group. Some of these orbifolds have either euclidean, spherical or hyperbolic structure. As an application, we obtain an alternative proof of theorem 1 of Hagelberg, Maclaughlan and Rosenberg in [5]. We also obtain a similar result for generalized Coxeter groups.