Pure subgroups split
Previous Page 17
Ladislav Bican (1979)
Commentationes Mathematicae Universitatis Carolinae
H. A. Dye (2009)
Fundamenta Mathematicae
Two virtual link diagrams are homotopic if one may be transformed into the other by a sequence of virtual Reidemeister moves, classical Reidemeister moves, and self crossing changes. We recall the pure virtual braid group. We then describe the set of pure virtual braids that are homotopic to the identity braid.
Ladislav Bican (1980)
Commentationes Mathematicae Universitatis Carolinae
P. Normak (1980)
Semigroup forum
Marc-Hubert Nicole, Adrian Vasiu, Torsten Wedhorn (2010)
Annales scientifiques de l'École Normale Supérieure
Let be a field of characteristic . Let be a over (i.e., an -truncated Barsotti–Tate group over ). Let be a -scheme and let be a over . Let be the subscheme of which describes the locus where is locally for the fppf topology isomorphic to . If , we show that is pure in , i.e. the immersion is affine. For , we prove purity if satisfies a certain technical property depending only on its -torsion . For , we apply the developed techniques to show that all level ...
K.H. Hofmann, A. Stralka (1972)
Semigroup forum
Previous Page 17