The Malnormality of Certain Subgroups of Small Cancellation Groups.
We study the structure of the ideals of the semigroup of all isotone (order-preserving) partial injections as well as of the semigroup of all monotone (order-preserving or order-reversing) partial injections on an n-element set. The main result is the characterization of the maximal subsemigroups of the ideals of and .
C. Berger claimed to have constructed an -operad-structure on the permutohedras, whose associated monad is exactly the Milgram model for the free loop spaces. In this paper I will show that this statement is not correct.
The main result of this paper is a description of totally commutative idempotent groupoids. In particular, we show that if an idempotent groupoid (G,·) has precisely m ≥ 2 distinct essentially binary polynomials and they are all commutative, then G contains a subgroupoid isomorphic to the groupoid described below. In [2], this fact was proved for m = 2.
Given a map f: X→Y and a Nielsen root class, there is a number associated to this root class, which is the minimal number of points among all root classes which are H-related to the given one for all homotopies H of the map f. We show that for maps between closed surfaces it is possible to deform f such that all the Nielsen root classes have cardinality equal to the minimal number if and only if either N R[f]≤1, or N R[f]>1 and f satisfies the Wecken property. Here N R[f] denotes the Nielsen...