A Problem in the Theory of Normal Flitting Classes.
The notion of age of elements of complex linear groups was introduced by M. Reid and is of importance in algebraic geometry, in particular in the study of crepant resolutions and of quotients of Calabi–Yau varieties. In this paper, we solve a problem raised by J. Kollár and M. Larsen on the structure of finite irreducible linear groups generated by elements of age . More generally, we bound the dimension of finite irreducible linear groups generated by elements of bounded deviation. As a consequence...
It is shown, under ZFC, that a -group has the interesting property of being -prebalanced in every torsion-free abelian group in which it is a pure subgroup. As a consequence, we obtain alternate proofs of some well-known theorems on -groups.
Let K be an algebraic number field with non-trivial class group G and be its ring of integers. For k ∈ ℕ and some real x ≥ 1, let denote the number of non-zero principal ideals with norm bounded by x such that a has at most k distinct factorizations into irreducible elements. It is well known that behaves for x → ∞ asymptotically like . We prove, among other results, that for all integers n₁,n₂ with 1 < n₁|n₂.
Let K be an algebraic number field with non-trivial class group G and be its ring of integers. For k ∈ ℕ and some real x ≥ 1, let denote the number of non-zero principal ideals with norm bounded by x such that a has at most k distinct factorizations into irreducible elements. It is well known that behaves, for x → ∞, asymptotically like . In this article, it is proved that for every prime p, , and it is also proved that if and m is large enough. In particular, it is shown that for...