A characterization of semilattices of left groups
Let G be an additive abelian group of order k, and S be a sequence over G of length k+r, where 1 ≤ r ≤ k-1. We call the sum of k terms of S a k-sum. We show that if 0 is not a k-sum, then the number of k-sums is at least r+2 except for S containing only two distinct elements, in which case the number of k-sums equals r+1. This result improves the Bollobás-Leader theorem, which states that there are at least r+1 k-sums if 0 is not a k-sum.
In the class of complete games, the Shapley index of power is the characteristic invariant of the group of automorphisms, for these are exactly the permutations of players preserving the index.
We proved that the symplectic groups , where is a Fermat prime number is uniquely determined by its order, the first largest element orders and the second largest element orders.
Let be a finite group and be the set of element orders of . Let and be the number of elements of order in . Set . In fact is the set of sizes of elements with the same order in . In this paper, by and order, we give a new characterization of finite projective special linear groups over a field with elements, where is prime. We prove the following theorem: If is a group such that and consists of , , and some numbers divisible by , where is a prime greater than...
Let denote the set of element orders of a finite group . If is a finite non-abelian simple group and implies contains a unique non-abelian composition factor isomorphic to , then is called quasirecognizable by the set of its element orders. In this paper we will prove that the group is quasirecognizable.