A Class of Balanced Laws on Quasigroups (I)
Let be a finite group and the cyclic group of order . Consider the multiplicative operations , where , , . Define a new multiplication on by assigning one of the above multiplications to each quarter , for . We describe all situations in which the resulting quasigroup is a Bol loop. This paper also corrects an error in P. Vojtěchovsk’y: On the uniqueness of loops .
We investigate loops defined upon the product by the formula , where , for appropriate parameters . Each such loop is coupled to a 2-cocycle (in the group-theoretical sense) and this connection makes it possible to prove that the loop possesses a metacyclic inner mapping group. If , then the loop is an A-loop. Questions of isotopism and isomorphism are considered in detail.
A pointed quasigroup is said to be semicentral if it is principally isotopic to a group via a permutation on one side and a group automorphism on the other. Convex combinations of permutation matrices given by the one-sided multiplications in a semicentral quasigroup then yield doubly stochastic transition matrices of finite Markov chains in which the entropic behaviour at any time is independent of the initial state.
Butler groups formed by factoring a completely decomposable group by a rank one group have been studied extensively. We call such groups, bracket groups. We study bracket modules over integral domains. In particular, we are interested in when any bracket -module is tensor a bracket group.
We prove here an Eilenberg type theorem: the so-called conjunctive varieties of rational languages correspond to the pseudovarieties of finite semilattice-ordered monoids. Taking complements of members of a conjunctive variety of languages we get a so-called disjunctive variety. We present here a non-trivial example of such a variety together with an equational characterization of the corresponding pseudovariety.