Quasigroups satisfying balanced but not Belousov equations are group isotopes.
We describe the kernel of the canonical map from the Floyd boundary of a relatively hyperbolic group to its Bowditch boundary. Using the Floyd completion we further prove that the property of relative hyperbolicity is invariant under quasi-isometric maps. If a finitely generated group admits a quasi-isometric map into a relatively hyperbolic group then is itself relatively hyperbolic with respect to a system of subgroups whose image under is situated within a uniformly bounded distance...
We consider a ‘contracting boundary’ of a proper geodesic metric space consisting of equivalence classes of geodesic rays that behave like geodesics in a hyperbolic space.We topologize this set via the Gromov product, in analogy to the topology of the boundary of a hyperbolic space. We show that when the space is not hyperbolic, quasi-isometries do not necessarily give homeomorphisms of this boundary. Continuity can fail even when the spaces are required to be CAT(0). We show this by constructing...