The varieties of n-testable semigroups.
2000 Mathematics Subject Classification: Primary: 17A32; Secondary: 16R10, 16P99, 17B01, 17B30, 20C30Let F be a field of characteristic zero. In this paper we study the variety of Leibniz algebras 3N determined by the identity x(y(zt)) ≡ 0. The algebras of this variety are left nilpotent of class not more than 3. We give a complete description of the vector space of multilinear identities in the language of representation theory of the symmetric group Sn and Young diagrams. We also show that the...
We study the structure of the virtual braid group. It is shown that the virtual braid group is a semi-direct product of the virtual pure braid group and the symmetric group. Also, it is shown that the virtual pure braid group is a semi-direct product of free groups. From these results we obtain a normal form of words in the virtual braid group. We introduce the concept of a universal braid group. This group contains the classical braid group and has as quotients the singular braid group, virtual...
We define the Yokonuma-Temperley-Lieb algebra as a quotient of the Yokonuma-Hecke algebra over a two-sided ideal generated by an expression analogous to the one of the classical Temperley-Lieb algebra. The main theorem provides necessary and sufficient conditions for the Markov trace defined on the Yokonuma-Hecke algebra to pass through to the quotient algebra, leading to a sequence of knot invariants which coincide with the Jones polynomial.