Displaying 681 – 700 of 859

Showing per page

Théorème de Kurosh pour les relations d’équivalence boréliennes

Aurélien Alvarez (2010)

Annales de l’institut Fourier

En théorie des groupes, le théorème de Kurosh est un résultat de structure concernant les sous-groupes d’un produit libre de groupes. Le théorème principal de cet article est un résultat analogue dans le cadre des relations d’équivalence boréliennes à classes dénombrables, que nous démontrons en développant une théorie de Bass-Serre dans ce cadre particulier.

Theory of coverings in the study of Riemann surfaces

Ewa Tyszkowska (2012)

Colloquium Mathematicae

For a G-covering Y → Y/G = X induced by a properly discontinuous action of a group G on a topological space Y, there is a natural action of π(X,x) on the set F of points in Y with nontrivial stabilizers in G. We study the covering of X obtained from the universal covering of X and the left action of π(X,x) on F. We find a formula for the number of fixed points of an element g ∈ G which is a generalization of Macbeath's formula applied to an automorphism of a Riemann surface. We give a new method...

Thick subcategories of the stable module category

D. Benson, Jon Carlson, Jeremy Rickard (1997)

Fundamenta Mathematicae

We study the thick subcategories of the stable category of finitely generated modules for the principal block of the group algebra of a finite group G over a field of characteristic p. In case G is a p-group we obtain a complete classification of the thick subcategories. The same classification works whenever the nucleus of the cohomology variety is zero. In case the nucleus is nonzero, we describe some examples which lead us to believe that there are always infinitely many thick subcategories concentrated...

Currently displaying 681 – 700 of 859